Aufgabe Impfstoff A_107 (Teil b und c) aus dem Mathematik Aufgabenpool

Die matheamatische Grundlage zur Lösung des Beispiels „Impfstoff A_107“ (Teil b und c) aus dem Mathematik Aufgabenpool sind Lineare Funktionen bzw. Lineare Gewinnfunktionen, welche einen linearen Verlauf haben.

Lineare Funktion: \(f(x) = k \cdot x + d\)

Teil bGewinn

Bei Teil b geht es darum, die zwei Gewinnfunktionen zu verbinden. Geometrisch betrachtet suchen wir den Schnittpunkt von zwei Geraden, denn jede Lineare Gleichung entspricht geometrisch einer Gerade.

\(
G_1(x) = 120 \cdot x \\
G_2(x) = 250 \cdot x – 750000
\)

Mit Hilfe des Gleichsetzungsverfahren setzen wir die beiden Gewinnfunktionen gleich. \(G_1(x) = G_2(x)\)

\(120 \cdot x = 250 \cdot x – 750000 | – 250 \cdot x \\
– 130 \cdot x = – 750000 | : -130 \\
x = 5769,23
\)

Das Ergebnis muss jedoch von 5769, 23 auf 5770 Packungen aufgerundet werden, da Unternehmen für gewöhnlich nur ganze Packungen verkaufen!

Ab 5770 verkauften Packungen ist die Gewinnfunktion G2 für das Unternehmen besser.

Teil cAbstand von zwei Geraden messen

Bei Teil c geht es darum den Abstand zwischen zwei Gewinnfunktionen zu messen, wobei der Abstand parallel zur y-Achse (Gewinn) gemeint ist und dieser genau dem Wert 10.000 Euro entsprechen muss. 10.000 Euro entsprechen genau der Höhe eines Kästchens. Diese Höhe muss zwischen die zwei Geraden eingepasst werden. Bei ca. 165 und ca. 280 verkauften Packungen beträgt der Unterschied der Gewinnwerte € 10.000.

Gewinnfunktion Impfstoff A_107 - Teil c
Gewinnfunktion Impfstoff A_107 - Teil c
Gewinnfunktion Impfstoff A_107 – Teil c

Aufgabe Impfstoff A_107 (Teil a) aus dem Mathematik Aufgabenpool

Die matheamatische Grundlage zur Lösung des Beispiels „Impfstoff A_107“ (Teil a) aus dem Mathematik Aufgabenpool sind Lineare Funktionen bzw. Lineare Kostenfunktionen, welche einen linearen Verlauf haben.

Lineare Funktion: \(f(x) = k \cdot x + d\)

Bei der Teil a verwenden wir folgende Kostenfunktion: \(K(x) = k \cdot x + d\)

K(x) steht für die Gesamtkosten, die von der Anzahl x der gekauften Packungen abhängig sind.

Erste Möglichkeit:

Bei der ersten Möglichkeit können Rechte um 10 Millionen Euro (= 10.000.000 Euro) gekauft werden. Diese „10 Millionen Euro“ entsprechen in der Kostenfunktion dem sogeannten „Fixpreis„. Diese Kosten müssen zu den laufenden Kosten für die Produktion hinzugerechnet werden. Fixkosten entsprechen immer dem „d“ in der Linearen Gleichung. Fixkosten müssen unabhängig von der produzierten Stückzahl bezahlt werden.

Die laufenden Kosten betragen 25 Euro pro Packung (=Stückpreis). Dies entspricht der Steigung der Linearen Kostenfunktion. Je höher dieser Stückpreis, desto höher steigen die Kosten und desto steiler wird die Gerade. (–> Direktes Verhältnis!) Die Steigung bzw. die Stückkosten entsprechen immer dem „k“ in der Linearen Gleichung.

Setzt man nun statt d und k die angegeben Werte in die Kostenfunktion oben ein, so erhält man folgende Lineare Gleichung:

\(K_1(x) = 25 \cdot x + 10.000.000\)

Zweite Möglichkeit:

Die zweite Möglichkeit geht genauso wie die Erste, jedoch gibt es diesmal keinen Fixpreis (ohne Rechte um 1 Millionen Euro), daher ist „d“ null bzw. nicht verhanden.

Es müssen statt dem Fixpreis höhere Stückkosten bezahlt werden. Diese betragen 50 Euro pro Packung. Diese Kosten entsprechen der Steigung „k“ der Funktion.

Setzt man nun statt d und k die angegeben Werte von oben in die Kostenfunktion ein, so erhält man nun folgende Lineare Gleichung:

\(K_2(x) = 50 \cdot x + 0\)

Stell man die beiden Kosten in Geogebra graphisch dar, so kann man erkennen, welche Möglichkeit sinnvoller ist.

Hier der Link zu Geogebra: https://www.geogebra.org/m/ywzfhxzh

Hier geht es weiter zu a_107 Teil b und c