Aufgabe Impfstoff A_107 (Teil a) aus dem Mathematik Aufgabenpool

Die matheamatische Grundlage zur Lösung des Beispiels “Impfstoff A_107” (Teil a) aus dem Mathematik Aufgabenpool sind Lineare Funktionen bzw. Lineare Kostenfunktionen, welche einen linearen Verlauf haben.

Lineare Funktion: \(f(x) = k \cdot x + d\)

Bei der Teil a verwenden wir folgende Kostenfunktion: \(K(x) = k \cdot x + d\)

K(x) steht für die Gesamtkosten, die von der Anzahl x der gekauften Packungen abhängig sind.

Erste Möglichkeit:

Bei der ersten Möglichkeit können Rechte um 10 Millionen Euro (= 10.000.000 Euro) gekauft werden. Diese “10 Millionen Euro” entsprechen in der Kostenfunktion dem sogeannten “Fixpreis“. Diese Kosten müssen zu den laufenden Kosten für die Produktion hinzugerechnet werden. Fixkosten entsprechen immer dem “d” in der Linearen Gleichung. Fixkosten müssen unabhängig von der produzierten Stückzahl bezahlt werden.

Die laufenden Kosten betragen 25 Euro pro Packung (=Stückpreis). Dies entspricht der Steigung der Linearen Kostenfunktion. Je höher dieser Stückpreis, desto höher steigen die Kosten und desto steiler wird die Gerade. (–> Direktes Verhältnis!) Die Steigung bzw. die Stückkosten entsprechen immer dem “k” in der Linearen Gleichung.

Setzt man nun statt d und k die angegeben Werte in die Kostenfunktion oben ein, so erhält man folgende Lineare Gleichung:

\(K_1(x) = 25 \cdot x + 10.000.000\)

Zweite Möglichkeit:

Die zweite Möglichkeit geht genauso wie die Erste, jedoch gibt es diesmal keinen Fixpreis (ohne Rechte um 1 Millionen Euro), daher ist “d” null bzw. nicht verhanden.

Es müssen statt dem Fixpreis höhere Stückkosten bezahlt werden. Diese betragen 50 Euro pro Packung. Diese Kosten entsprechen der Steigung “k” der Funktion.

Setzt man nun statt d und k die angegeben Werte von oben in die Kostenfunktion ein, so erhält man nun folgende Lineare Gleichung:

\(K_2(x) = 50 \cdot x + 0\)

Stell man die beiden Kosten in Geogebra graphisch dar, so kann man erkennen, welche Möglichkeit sinnvoller ist.

Hier der Link zu Geogebra: https://www.geogebra.org/m/ywzfhxzh

Hier geht es weiter zu a_107 Teil b und c

Kosten Diskothek-Besuch (Lineare Funktion)

Lisa und ihr Freund Peter gehen öfters Diskotheks in Wien besuchen, um anstrengende Arbeitswochen ausklingen zu lassen.

Beispiel 1

Einmal wollen sie nur Kokus-Coctails trinken gehen. Sie müssen dazu einen Eintritt von 12 Euro zahlen*. Jeder Cocktail kostet 4,5. Sie bestellen insgesamt fünf Cocktails.

1) Wieviel kostet ihr Besuch insgesamt? Wieviel kostet ihr Besuch insgesamt, wenn sie einen weiteren Cocktail bestellen?

2) Stelle die Kostenfunktion des Besuchs als Lineare Funktion graphisch dar! Wie lauten diese Kostenfunktion?

Lösung Beispiel 1:

Mathematisch gesehen handelt es sich bei diesem Beispiel um eine Lineare Funktion nach dem Schema:

\(f(x) = k \cdot x + d\)

Dabei entspricht:
k = Preis für einen Cocktail (Steigung)
x = Anzahl der Cocktails
d = Eintrittspreis (Fixpreis)
f(x) = y = Preis für den gesamten Besuch

Setzt man nun k (=4,5 Euro) und d (=15 Euro) in die Lineare Funktion ein, so erhällt man folgende Kostenfunktion:

\(f(x) = 4,5 \cdot x + 15\)

Je nach Anzahl der bestellten Cocktails muss am Ende etwas anderes bezahlt werden. Je mehr Cocktails, desto höher der Gesamtpreis für den Besuch (inklusive Eintrittspreis).

Für x = 5 (=5 Cocktails) erhält man folgende Gleichung:

\(f(5) = 4,5 \cdot 5 + 15 = 37,5\)

Für einen zusätzlichen Cocktail x = 6 (6 Cocktails) erhält man folgende Gleichung:

\(f(6) = 4,5 \cdot 6 + 15 = 42\)

Die graphische Lösung von Beispiel 1 gibt es auf Geogebra: https://www.geogebra.org/m/e339tfaz

* Hinweis: Die Preisangaben in den Beispielen oberhalb sind frei erfunden und dienen lediglich Anschaungszwecken.