Mathematik Telegram-Gruppen – Mathematik Nachhilfe Online

Du suchst kostenlose Nachhilfe für Mathematik? Du lernst Mathematik nicht gerne alleine und möchtest dich mit anderen vernetzen, die ebenfalls Schwierigkeiten in Mathematik haben? Oder willst Du kostenlos anderen in Mathe helfen?

Dann trete einfach den Mathematik-Nachhilfe-Gruppen bei und sende jene Beispiele und Aufgaben in die Gruppe, bei denen du dir unsicher bist oder bei denen du Hilfe benötigst!

Hier geht es per Link zu den Telegram-Gruppen:

Falls du den Telegram-Messenger noch nicht kennst, kannst du dich hier informieren, was es damit auf sich hat und was man alles damit machen kann:
https://telegram.org/
https://de.wikipedia.org/wiki/Telegram
https://www.basicthinking.de/blog/2019/08/27/whatsapp-alternative-telegram/

Hier ein paar Regeln an die sich alle TeilnehmerInnen in den Gruppen halten müssen, da sonst der Ausschluss aus der Gruppe/ den Gruppen droht:

  • keine Werbung für Nachhilfe
  • kein spamen
  • keine Beiträge, die die geltenden Gesetze verletzten
  • kein Belästigen von anderen Gruppenteilnehmern
  • keine Beiträge in die Gruppe senden, die nichts mit Mathematik zu tun haben
  • keine Privatgespräche in den Gruppen
  • keine Beiträge in die Gruppen senden, die für Kinder nicht geeignet sind (führt ohne Vorwarnung zum Ausschluss aus der Gruppe/ den Gruppen)

Die AdministratorInnen behalten sich das Recht vor, weitere Regeln zu den bisherigen hinzuzufügen oder die bisherigen abzuändern und einzelne Mitglieder ohne der Nennung von Gründen aus der Gruppe zu entfernen.

Bei Problemen – welcher Art auch immer – sofort die AdministratorInnen der Gruppe informieren!

Was bedeutet 2*π?

Sicher fragen sich die einen oder anderen, was es mit dem Namen dieser Webseite auf sich hat!

Pi als Kreiszahl (3,1415926…)

Der Ausdruck “2 mal π” (kurz 2π) kommt aus der Mathematik. Der griechische Buchstabe Pi (π) steht für die Kreiszahl Pi. Sie ist als Verhältnis des Umfangs eines Kreises zu seinem Durchmesser definiert. Pi hat den Verhältniswert 3,1415926… .

Pi als Winkel ( π =180°)

Viele wissen jedoch nicht, dass Pi (π) nicht nur eine Kreiszahl ist, sondern auch ein Winkel! Die Kreiszahl Pi entspricht nämlich genau einem Winkel von 180 Grad (also einem halben Kreis). Multipliziert man Pi nun mit dem Faktor zwei (also das Doppelte von Pi), so entspricht einem vollen Winkel mit 360 Grad! Dies entspricht dem Winkel eines Kreises!

Hier das Ganze nochmal mathematisch:
π = 180°, 2 mal π = 2 mal 180° = 360°

Mehr zu diesem Thema findest du auch hier:

Kommaverschiebung – Einfach erklärt!

Das Komma in einer Zahl kann man mit Hilfe der Kommaverschiebung verändern. Dadurch ändert sich auch die Zahl selbst!

Multiplizieren – Kommaverschiebung nach rechts – Zahl wird größer

Durch das Multiplizieren einer Zahl mit 10 verschiebt sich das Komma um eine Stelle nach rechts! Die Anzahl der Nullen entsprechen den Stellen, um die das Komma nach rechts verschoben wird!

Beispiel: 1,22 mal 10 ist 12,2 ← Das Komma ist um eine Stelle nach rechts gewandert und die Zahl ist dadurch größer geworden!

  • Mal 10 → 1 Stelle nach rechts (Beispiel: 1,22 mal 10 ist 12,2)
  • Mal 100 → 2 Stellen nach rechts (Beispiel: 1,22 mal 100 ist 122,0)
  • Mal 1000 → 3 Stellen nach rechts (Beispiel: 1,22 mal 1000 ist 1220,0)

Dividieren – Kommaverschiebung nach links – Zahl wird kleiner

Durch die Division einer Zahl durch 10 verschiebt sich das Komma um eine Stelle nach links! Die Anzahl der Nullen entsprechen den Stellen, um die das Komma nach links verschoben wird!

Beispiel: 143,2 dividiert durch 10 ist 14,32 ←Das Komma ist um eine Stelle nach links gewandert und die Zahl ist dadurch kleiner geworden!

  • Dividiert durch 10 → 1 Stelle nach links (Beispiel: 143,2 dividiert durch 10 ist 14,32)
  • Dividiert durch 100 → 2 Stellen nach links (Beispiel: 143,2 dividiert durch 100 ist 1,432)
  • Dividiert durch 1000 → 3 Stellen nach links (Beispiel: 143,2 dividiert durch 1000 ist 0,1432)

Den ganzen Artikel zum Thema Kommaverschiebung gibt es auch als pdf zum downloaden!

Du brauchst (Online-)Nachhilfe in Mathematik? Dann schau doch mal auf meiner Infoseite vorbei und schreibe mir eine Nachricht oder rufe mich an!

Lineare Funktionen – Explizite und Implizite Darstellung

Hier erfährst du, was der Unterschied zwischen der expliziten und impliziten Darstellung der Gleichung einer Linearen Funktion ist.

Vielleicht hast du ja schon eine Gleichung in dieser Form \( f(x) = k \cdot x + d\) oder in dieser Form \( x + y = d\) gesehen.

Übrigens: Oft findet statt y die Schreibweise f(x). Jedoch haben f(x) und y die selbe Bedeutung.

Und etwas davon wiedererkannt?

Die erste Gleichung wurde in der sogenannten “expliziten Darstellung” angegeben. Sie drückt entweder die Variable x oder die Variable y explizit aus. Aber meistens beginnt eine Lineare Gleichung in der expliziten Darstellung mit y = …

Die zweite Funktion dagegen wurde in der sogenannten “impliziten Darstellung” angegeben. Diese Form der Darstellung wird oft verwendet, wenn es darum geht zwei Gleichungen zu lösen.

Hier ein paar Beispiele für die explizite Darstellung einer Linearen Gleichung:

\( y = k \cdot x + d \\
y = 2 \cdot x + 2 \\
y = 4 \cdot x -2\\
y = -3 \cdot x + 1\)

Und hier ein paar Beispiele für die implizite Darstellung einer Linearen Gleichung:

\( x + y = d \\
2x + 2y = 2 \\
-3x +4y = 5 \\
\frac {1} {2} x + \frac {2} {4} y = \frac {1} {2}
\)

Du brauchst (Online-)Nachhilfe in Mathematik? Dann schau doch mal auf meiner Infoseite vorbei und schreibe mir eine Nachricht oder rufe mich an!

Brüche kürzen mit dem größten gemeinsamen Teiler (ggT)

Wusstet ihr, dass es einen Zusammenhang zwischen dem Kürzen von Brüchen und dem größten gemeinsamen Teiler (ggT) gibt? Hä?

Ja den gibt es!

Wenn ihr nämlich Brüche kürzen könnt oder Brüche erweitert, verwendet ihr dazu nämlich immer die berühmten Primzahlen und den größte gemeinsame Teiler (ggT)! Dieser besteht ja aus dem Produkt jener Primzahlen, die beide Bruchzahlen gemeinsam haben!

Was es nun aber genau damit auf sich hat erklärt euch Christian Spannagel anhand eines sehr praktischen und anschaulichen Beispiels:

Brüche kürzen und der ggT (von Christian Spannagel)

Du brauchst “Offline-Nachhilfe” in Mathematik in Wien? Dann schau doch mal auf meiner Infoseite vorbei und schreibe mir eine Nachricht oder rufe mich an!